

2017 Marking Scheme

Grade	Mark R	equired	° condidatos achievina anada
Awarded	(/ ₁₂₀)	%	% candidates achieving grade
A	90+	75.0%	30.3%
В	79+	65.8%	24.2%
С	68+	56.7%	21.3%
D	62+	51.7%	8.4%
No award	<62	<51.7%	15.8%

Section:	Multiple Choi	ce	Extended	Answer	Assignment	t
Average Mark:	16.2	/20	49.1	/80	13.9	/20

	2017	7 Hi	gher Chemistry Marking Scheme
MC Qu	Answer	% Pupils Correct	Reasoning
1	A	81	 ☑A Electronegativity difference C-I = 2.6-2.5 = 0.1 ∴ least polar bond ☑B Electronegativity difference C-I = 4.0-2.5 = 1.5 ∴ most polar bond ☑C Electronegativity difference C-I = 3.0-2.5 = 0.5 ☑D Electronegativity difference C-I = 2.8-2.5 = 0.3
2	D	86	 ▲ A non-polar hydrocarbon ∴ molecule is non-polar ∴ molecule is insoluble in water ▲ B one -OH groups ∴ molecule is polar ∴ molecule is soluble in water ▲ C aldehyde group ∴ molecule is slightly polar ∴ molecule is slightly soluble in water ▲ D three -OH groups ∴ molecule is polar ∴ molecule is very soluble in water
3	С	76	 ☑A Electronegativity of sulphur = 2.5 ☑B Electronegativity of silicon = 1.9 ∴ least attraction for electrons ☑C Electronegativity of nitrogen = 3.0 ∴ greatest attraction for electrons ☑D Electronegativity of hydrogen = 2.2
4	В	86	 A Covalent networks have high melting points e.g. B, C (diamond), C (graphite), Si B Phosphorus P4 is a covalent molecular substance also S8 and C60 (fullerene) C monatomic substances are found in group 0 e.g. He, Ne, Ar D metallic lattices are founds in metal elements e.g. Li, Be, Na, Mg, Al, K, Ca
5	D	82	 A water H₂O contains polar -OH groups which are attracted to charged rod B propanone contains polar C=O group which is attracted to charged rod C propanol C₃H₇OH contains polar -OH group which is attracted to charged rod hexane C₆H₁₄ is non-polar which is not attracted to charged rod
6	С	94	$2P_2H_4 + 7O_2 \longrightarrow P_4O_{10} + 4H_2O$
7	В	95	 A longest chain containing -OH functional group is three carbons long B longest chain = 3, -OH on C₁ and 2x -CH₃ methyl groups on C₂ C functional group located on C₁ to give functional group lowest numbering system D longest chain containing -OH function group is three carbons not five carbons
8	С	65	 A C₁₅H₂₉COOH is unsaturated :: C₁₅H₂₉COOH contains one C=C double bond B C₁₅H₃₁COOH is saturated :: C₁₅H₃₁COOH contains no C=C double bonds C C₁₇H₃₁COOH is unsaturated :: C₁₇H₃₁COOH contains two C=C double bonds C C₁₇H₃₅COOH is saturated :: C₁₇H₃₅COOH contains no C=C double bonds
9	A	98	☑A Activation is not a step in a free radical chain reaction mechanism. ☑B Initiation: Free-radicals are produced e.g. $Cl_2 \rightarrow 2Cl^\bullet$ ☑C Propagation: Free-radicals on both sides of arrow e.g. $CH_4 + Cl^\bullet \rightarrow CH_3^\bullet + HCl$ ☑D Termination: Free-radicals join together e.g. $CH_3^\bullet + Cl^\bullet \rightarrow CH_3Cl$
10	С	68	 A methylpropanoate C₃H₆O₂ is not an isomer of ethyl propanoate C₅H₁₀O₂ B pentan-2-one C₅H₁₀O is not an isomer of ethyl propanoate C₅H₁₀O₂ C pentanoic acid C₅H₁₀O₂ is an isomer of ethyl propanoate C₅H₁₀O₂ D pentane-1,2-diol C₅H₁₂O₂ is not an isomer of ethyl propanoate C₅H₁₀O₂
11	В	61	 A essential oils are volatile compounds to allow release of aroma B essential oils are volatile compounds which do not dissolve in water. C essential oils are non-water soluble D essential oils are non-water soluble
12	С	85	 A no. of moles of water formed dependent on formula of hydrocarbon B no. of moles of carbon dioxide formed dependent on formula of hydrocarbon C one mole of hydrocarbon burned completely in plentiful supply of oxygen D enthalpy of combustion has a plentiful supply of oxygen

13	В	67	 A Fluorine is a strong oxidising agent as it is located on bottom left of ECS B Lithium is a strong reducing agent as it is located on top right of ECS C Calcium is a reducing agent as it is located towards top right of ECS D Iodine is a oxidising agent as it is located towards bottom left of ECS
14	В	79	atom economy = $\frac{\text{mass of useful products}}{\text{total mass of reactants}} \times 100 = \frac{47.9}{189.9 + (2 \times 24.3)} \times 100$
15	С	84	The most reproducible set of results are Student C as they have three results within ± 0.2 cm 3 .
16	A	83	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
17	D	89	\blacksquare All reactions have an enthalpy change as bonds break and new bonds are formed \blacksquare B concentrations of reactants and products are not equal at equilibrium \blacksquare C activation energy of forward/reverse reactions only equal If \triangle H=0 \blacksquare D at equilibrium, rate of forward reaction equals rate of reverse reaction
18	A	76	Bond Breaking Steps $1x H-H = 1x436kJ = 436kJ$ $1x H-H = 1x436kJ = 436kJ$ $1x Br-Br = 1x194kJ = 194kJ$ $2x H-Br = 2x366kJ = 732kJ$ Total = 630kJ $\Delta H = \Sigma$ Bond enthalpies for bonds broken $\Delta H = 630$ $\Delta H = -102 \text{ kJ mol}^{-1}$
19	D	93	☑A glycerol has three -OH hydroxyl groups ☑B glycerol has three carbon atoms in compound ☑C glycerol has three -OH hydroxyl groups but no -COOH carboxyl group ☑D glycerol has three carbons and three -OH hydroxyl groups
20	В	70	 ☑A catalyst increases rate of the forward reaction (and the reverse reaction too) ☑B catalyst increases rate of forward reaction but no change in position of equilibrium ☑C catalysts do no change position of equilibrium but equilibrium is achieved faster ☑D catalysts do no change position of equilibrium but equilibrium is achieved faster

2017 Higher Chemistry Marking Scheme						
Long Qu	Answer	Reasoning				
1a	Si	Na Mg Al Si P4 S8 Cl2 Ar metallic metallic metallic covalent covalent covalent covalent monatomic bonding bonding bonding network molecular molecular molecular				
1b(i)	Electrons closer to nucleus across period	Atoms decrease in size across period due to increased nuclear charge. Electrons are harder to remove if they are closer to the nucleus				
1b(ii)	$Mg^{+}(g) ightarrow Mg^{2+}(g) + e^{-}$	$\frac{1^{s^{\dagger}} \text{ Ionisation Energy}}{1 \text{ mole of electrons removed from one mole of atoms in the gaseous state} \\ \frac{2^{nd} \text{ Ionisation Energy}}{1 \text{ mole of electrons removed from one mole of 1+ ions in the gaseous state} \\ 1 \text{ mole of electrons removed from one mole of 1+ ions in the gaseous state} \\ \end{bmatrix}$				
1b(iii)	3 rd ionisation is low as full outer shell is created. 4 th Ionisation is higher as it breaks full outer shell	Third ionisation energy creates a full outer shell. $A ^{2*}(g) \rightarrow A ^{3*}(g) + e^{-}$ 2,8,1 $A ^{3*}(g) \rightarrow A ^{4*}(g) + e^{-}$ Fourth ionisation energy breaks into a full outer shell. $A ^{3*}(g) \rightarrow A ^{4*}(g) + e^{-}$				
1c	Answer to include:	Argon is a monatomic gas in Group 0 which has only single atoms in its structure. The only type of Van der Waals forces between atoms of argon are London dispersion forces. London dispersion forces are the weakest form of intermolecular forces and this results in a low boiling point. Chlorine is a diatomic molecule but is non-polar due to both atoms having the same electronegativity. The only type of intermolecular forces between chlorine atoms are London dispersion forces. Chlorine has a higher melting point than argon because as it is diatomic and this increases the number of electrons in chlorine molecules compared to argon atoms. The increased number of electrons make a temporary dipole more likely and increases the strength of London dispersion forces, bringing molecules of Cl_2 closer together than atoms of Ar and raises the boiling point of Cl_2 higher than Ar.				
2a(i)	Answer to include:	436kJ of energy required to break one mole of H-H bonds 151 kJ of energy required to break one mole of I-I bonds I-I bonds much more likely to break than H-H bonds				
2a(ii)	Diagram showing:	Soloec 400°C kinetic energy Ea				
2a(iii) Part A	Equilibrium shifts to left	In increase in temperature would favour the endothermic reaction The endothermic reaction is the reverse reaction so equilibrium shifts to left as products are turned into reactants.				
2a(iii) Part B	Equal number of moles of gas on each side of equation	$H_{2(g)} + I_{2(g)} \implies 2HI_{(g)}$ $1 \mod 1 \mod 2 \mod 2$ $2 \mod 2 \mod 2$				

2a(iv) Part A	Activated Complex	Activated Complex is the unstable arrangement of atoms when the reactants bonds are half broken and the product bonds are half formed.						
2a(iv) Part B	-9.6	Enthalpy change = 173.2kJ - 182.8kJ = -9.6kJ mol ⁻¹						
2a(iv) Part C	Deceases activation energy	atalysts decrease the activation energy of both the forward and rever eactions						
2b(i)	To prevent dilution of reactants	f any water remains in the beaker prior to transfer of reactants the eactant concentration would decrease.						
2b(ii)	122.1	rate = $\frac{1}{\text{time}}$: time = $\frac{1}{\text{rate}}$ = $\frac{1}{0.00819 \text{ s}^{-1}}$ = 122.1 s						
2b(iii)	Decreases number of collisions at lower concentration	Lower concentration of Iodide I ⁻ ions results in less collisions between I ⁻ ions and the persulphate $S_2O_8^{2-}$ ions. Successful collisions which leads to products being formed requires both the correct collision geometry and collision energy to occur.						
		3 mark answer 2 mark answer 1 mark answer						
3	Open Question Answer to Include:	Understanding of the chemistry involved. A good comprehension of the chemistry has provided in a logically correct, including a statement of the principles involved and the application of these to respond to the problem. Demonstrates a <u>numeco</u> <u>reasonable</u> involved. The chemistry involved, making some statement(s) which are relevant to the situation, showing that the problem is understood. Understanding of the chemistry involved. The candidate has made some statement(s) which are relevant to the situation, showing that at least a little of the chemistry within the problem is understood.						
4 a(i)	pentan-1-ol	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						
		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
4a (ii)	Diagram showing:	Sodium hydroxide reacts with butanoic acid to form sodium butanoate O H H H \parallel \parallel \parallel \parallel Na ⁺ O C C C C C H \parallel \parallel \parallel H H H						
4 b(i)	esters	Fats and oils are esters formed by the condensation reactions between						
4b(ii)	Soaps	Salts of fatty acids from the hydrolysis of fats/oils have and polar head and a non-polar tail which allows use as a soap.						
4b(iii)	394.3 kJ	$ \begin{bmatrix} C_{17}H_{35}COOH + 26O_2 & \longrightarrow 18CO_2 + 18H_2O \\ 1 \text{ mol} & 18 \text{ mol} \\ 1 \text{ mol} \times ^{1}/_{18} & 1 \text{ mol} \\ = 0.0556 \text{ mol} \\ \text{mass} = \text{no. of mol} \times \text{gfm} \\ = 0.0556 \text{ mol} \times 284 \text{ g mol}^{-1} \\ = 15.8 \text{g} \end{bmatrix} $ 15.8g stearic acid $\longleftrightarrow 623 \text{ kJ} \times ^{10}/_{15.8} \\ = 394.3 \text{ kJ} $						

5a (i)	Answer to include:	e.g. bubbling gases through sodium hydroxide solution e.g. syringe to collect gas or downwards displacement of	e.g. syringe to collect gas or downwards displacement of air			
5a (ii)	Answer showing:	no. of mol = $\frac{\text{mass}}{\text{gfm}}$ = $\frac{0.40g}{126.1 \text{ g mol}^{-1}}$ = 0.00317mol Na ₂ SO ₃ + 2HCl \longrightarrow H ₂ O + 2NaCl + S 1mol 2mol 0.00317mol 0.00634mol (needed) n HCl = v × c = 0.05litres × 1.0 mol l ⁻¹ = 0.05mol (available) There is more HCl available for the reaction than is needed to compreact with all Na ₂ SO ₃ \therefore Na ₂ SO ₃ is the limiting reactant.	502 pletely			
5b	-1075	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ol ⁻¹ ol ⁻¹ ol ⁻¹			
5c(i)	165 g l ⁻¹	Join line of best fit ignoring the rogue result. Extrapolate up from 10°C to line and read solubility from araph				
5c(ii)	Answer to include:	CO_2 is a non-polar molecular due to the linear shape of CO_2 molecule which cancels a polarity of the molecule. SO_2 has an angular shape and is a polar molecule due to the electronegativity difference between the two elements in the molecule. The more p molecule the higher the solubility in polar solvents like water is likely to be				
6a (i)	н н онн н−с−с−с−с−н н н н н	Butan-2-ol is a secondary alcohol as it has 2 carbons directly attached to the carbon with the -C There are three alcohol isomers of butan-2-ol: butan-1-ol 2-methylpropan-1-ol H H	DH group. 2-ol 1 5H 1 hol tached to OH group			
6a (ii) Part A	Alcohols are flammable	A water bath should be used to heat the reactants instead of a Bur burner due to the flammability of the chemicals being heated.	nsen			
6a (ii) Part B	orange $ ightarrow$ green	Oxidising AgentStart ColourEnd ColourAcidified DichromateOrangeGreenBenedict's/Fehling'sBlueBrick Red (orange)Hot copper (II) oxideBlackBrownTollen's Reagent(Colourless)Silver mirror produced				
6a (ii) Part C	Tertiary alcohol	Oxidation of Alcohols Primary alcohol Aldehyde Carboxylic a Ketone X [No oxidation] 	on]			
6a(iii) Part A	butanoic acid (or 2-methylpropanoic acid)	For wet pH paper to turn red an acid would have to dissolve in the water in the pH p copper(II) oxide is an oxidising agent, only a primary alcohol will oxidise to form the carboxylic acid which would turn wet pH paper red. butan-1-ol (C4H9OH) would oxidise to butanoic acid. 2-methylpropan-1-ol (C4H9OH) would oxidise to 2-methylpropanoic acid.	oaper. As e			

		Write	e down the main spe	ecies						
		C₄H9OH → C₄H8O2								
		Balance all atoms other than O and H (not needed in this example)								
	C4H9OH + H2O	$C_{4}H_{9}OH \longrightarrow C_{4}H_{8}O_{2}$								
6a (iii)	\downarrow	Balance O atoms by adding H2O to one side								
Part B	$C_4H_8O_2 + 4H^+ + 4e^-$	Balan	$\frac{C_4H_9UH + H_2U}{C_4H_8U_2}$							
		$C_{4}H_{9}OH + H_{2}O \longrightarrow C_{4}H_{8}O_{2} + 4H^{+}$								
		Balan	ce charge by adding	ge^{-} to the mo	ost pos	itive side				
			C4H9OF	l + H₂O			C4H8O2 + 4	H⁺ + 4e⁻		
		2-methylpentanal								
6h(i)	2-methvlpentanal									
	·····			-CH3 methyl	group of	n 5 car	bons on -CHO ald	ehyde		
		Γ	A lala lavrala	C2 of main	chain 1	main	i chain functiona	Igroup	1	
		-	Aldenyde	Pentana 102	U	Hexanai	Heptanai	Нертапа	-	
6b(ii)	171°C		Boiling Point (°C)	102	200/	130	153		1	
		-	Difference		28%	, 2	3 6 1		4	
			Frediction	-		-	-	1/1/C	<u>]</u>	
6b(iii)	One from:	The long	ger the carbo	n chain ti	ne ni	gner the	boiling point	lina naint		
		The high		er of side	e gro	ups the ic	DWER THE DOI	ng point.		
	Silver mirror		Acidified D	oichromate	0	range	Green	r.		
6b(iv)	formed		Benedict's	/Fehling's		Blue	Brick Red (or	ange)		
	Tormeu		Hot copper Tollen's	(11) oxide Reagent	(Col	ourless)	Brown Silver mirror pr	oduced		
	Permanent dipole to	The C=O	bond is a polar	' bond due	to th	ne differer	nce in electro	negativity of t	the	
60	nermanent dinole	elements within the bond is large enough to form a polar covalent bond								
00	per muneri uipole	These permanent dipoles within polar covalent molecules are attracted to each								
	attractions	other are	e bring the mol	ecules clo	ser to	ogether an	d raise the be	oiling point.		
		Once the contents of the beaker have been poured through the filter funnel, the beaker is rinsed with deionised water to ensure every drop of the solution is washed into the standard								
7a	Answer to include:	flask. The filter funnel this then rinsed with deionised water (inside and out). The standard								
		flask is then filled up the mark with the last few drops being added by dropper so that the								
	Permanaanate is	Donmon	me meniscus is	iona ono		e riusn. Ia and tha	and internet	+ in the tite	ation	
7 b(i)	rei manganare is	to become colourless Managese Mn ²⁺ ions						in the time	non	
	self-indicating	To become colourless Manganese Mn ²⁺ lons.								
7 h(ii)				Mungune						
	H' ions are	Acid co	ntains H⁺ ions	which ar	e a r	eactant ii	n the reaction	on, appearing		
	H' ions are reactants	Acid con before ⁻	ntains H ⁺ ions the arrow.	which ar	ear	eactant ii	n the reactio	on, appearing		
7 5 (iii)	reactants	Acid cor before The 1st Tit	ntains H ⁺ ions the arrow. tre is the rough ⁻	which ar	e a r	eactant in	n the reaction	on, appearing ut gives an idea	of the	
7b(iii)	Finns are reactants Sample 1 is ignored	Acid con before The 1 st Ti- rough volu with the r	ntains H ⁺ ions the arrow. tre is the rough ume at which the najority of the v	which ar titre which colour chan olume adde	e a r is not nge ta d in o	eactant in designed to kes place. S ne big addit	n the reaction to be accurate b tubsequent titro tion and the rem	on, appearing ut gives an idea ations are carria	of the ed out Ided	
7b(iii) Part A	Sample 1 is ignored as it is inaccurate	Acid cor before The 1 st Ti- rough volu with the r drop by d	ntains H ⁺ ions the arrow. tre is the rough ⁻ ume at which the najority of the v rop until the colo	which ar titre which colour chan olume adde our change i	e a r is not nge ta d in oi s accu	eactant in designed to kes place. S ne big addit urately dete	n the reaction to be accurate b subsequent titra ion and the rem rmined.	on, appearing ut gives an idea ations are carric aining volume a	of the ed out dded	
7b(iii) Part A	Fions are reactants Sample 1 is ignored as it is inaccurate	Acid con before The 1 st Tirrough volu with the r drop by di n o. of mo	ntains H ⁺ ions the arrow. tre is the rough ume at which the najority of the v rop until the colo ol = volume x co	which ar titre which colour char olume adde our change i ncentratio	e a r is not nge ta d in oi s accu on = C	eactant in designed to kes place. S ne big addit urately dete 0.01455litre	n the reaction to be accurate b tubsequent titre ion and the rem rmined. s × 0.02mol 1-1 =	on, appearing ut gives an idea ations are carria aining volume a 0.000291mol	of the ed out dded	
7b(iii) Part A	Finns are reactants Sample 1 is ignored as it is inaccurate	Acid con before The 1 st Tir rough volu with the r drop by d n o. of ma 51	ntains H ⁺ ions the arrow. tre is the rough ume at which the najority of the v rop until the colo of = volume x co Fe ²⁺ + 8H ⁺	which ar titre which colour char olume adde <u>ur change i</u> ncentratio + MnC	e a r is not nge ta d in or s accu on = C D4 ⁻ -	eactant in designed to kes place. S ne big addit urately dete 0.01455litre 5	n the reaction to be accurate by subsequent titra- tion and the rem rmined. s x 0.02mol 1 ⁻¹ = Fe ³⁺ + M	on, appearing ut gives an idea ations are carrie atining volume a 0.000291mol n ²⁺ + 4H ₂ (of the ed out dded	
7b(iii) Part A 7b(iii)	H' ions are reactants Sample 1 is ignored as it is inaccurate 0.0502	Acid con before The 1 st Tir rough volu with the r drop by d n o. of mc 5 1	ntains H ⁺ ions the arrow. tre is the rough ume at which the najority of the v rop until the colo ol = volume x co Fe ²⁺ + 8H ⁺	which ar titre which colour char olume adde our change i ncentration + MnC	is not nge ta d in or s accu on = 0 Q_4^- -	eactant in designed to kes place. S ne big addit urately dete 0.01455litre 5	n the reaction to be accurate b subsequent titro ion and the rem rmined. s × 0.02mol 1 ⁻¹ = Fe ³⁺ + M	on, appearing ations are carrie ations volume a 0.000291mol n ²⁺ + 4H ₂ (of the ed out dded	
7b(iii) Part A 7b(iii) Part B	A ions are reactants Sample 1 is ignored as it is inaccurate 0.0502	Acid con before The 1 st Tir rough volu with the r drop by di n o. of mo 5 1 0.0012	ntains H ⁺ ions the arrow. tre is the rough ume at which the najority of the v rop until the colo of = volume x co Fe ²⁺ + 8H ⁺ nol	which ar titre which colour char olume adde <u>our change i</u> ncentratio <u>1mol</u> 0.000291 no of	is not nge ta d in or s accu on = C D4 ⁻ -	eactant in designed to kes place. S ne big addit urately dete 0.01455litre 5 0.004	the reaction to be accurate by bubsequent titration and the remined. $s \times 0.02$ mol 1 ⁻¹ = Fe ³⁺ + M	on, appearing ut gives an idea ations are carric ationing volume ac 0.000291mol n ²⁺ + 4H ₂ (of the ed out dded	
7b(iii) Part A 7b(iii) Part B	A' ions are reactants Sample 1 is ignored as it is inaccurate 0.0502	Acid con before The 1 st Tir rough volu with the r drop by d no. of mc 5n 0.0012	ntains H ⁺ ions the arrow. tre is the rough ume at which the najority of the v rop until the colo ol = volume x co Fe ²⁺ + 8H ⁺ nol 255mol oncentration	which ar titre which colour char olume adde our change i ncentratio 1mol 0.000291 ano. of volur	e a r is not nge ta d in or s accu on = C $D_4^$ Imol mol ne	eactant in designed to kes place. S ne big addit urately dete 0.01455litre 5 	n the reaction to be accurate b subsequent titro ion and the rem rmined. s x 0.02mol 1 ⁻¹ = Fe ³⁺ + M 01255mol 225litres	on, appearing ut gives an idea ations are carrie aining volume a 0.000291mol n ²⁺ + 4H ₂ (0.0502mol l ⁻	of the ed out dded D	
7b(iii) Part A 7b(iii) Part B	H' ions are reactants Sample 1 is ignored as it is inaccurate 0.0502 Solution whose	Acid con before The 1 st Tir rough volu with the r drop by d n o. of mc 5 h 0.0012 c	ntains H ⁺ ions the arrow. tre is the rough ume at which the najority of the v rop until the colo of = volume x co Fe ²⁺ + 8H ⁺ nol 255mol oncentration	which ar titre which colour char olume adde <u>ur change i</u> ncentratio <u>1mol</u> 0.000299 <u>1mol</u> 0.000299 <u>1mol</u> 0.000291 <u>1mol</u> 0.000291 <u>1mol</u>	e a r is not nge ta d in ou s accu on = C D4 ⁻ - Imol mol me	eactant in designed to kes place. S ne big addit urately dete 0.01455litre 5 	n the reaction to be accurate by subsequent titra- tion and the rem rmined. s × 0.02mol 1 ⁻¹ = Fe ³⁺ + M 01255mol 025litres =	on, appearing ut gives an idea ations are carrie ations volume ac 0.000291mol n ²⁺ + 4H ₂ (0.0502mol l ⁻	of the ed out dded D	
7b(iii) Part A 7b(iii) Part B 7b(iii)	A' ions are reactants Sample 1 is ignored as it is inaccurate 0.0502 Solution whose concentration is	Acid con before The 1 st Tir rough volu with the r drop by d n o. of ma 5 0.0012 c Standar	ntains H ⁺ ions the arrow. tre is the rough ume at which the najority of the v rop until the colo ol = volume x co Fe ²⁺ + 8H ⁺ nol 255mol oncentration	which ar titre which colour char olume adde <u>olume adde</u> <u>incentratio</u> <u>imol</u> <u>0.000291</u> <u>mol</u> <u>0.000291</u> <u>mol</u> <u>0.000291</u> <u>mol</u> <u>0.000291</u> <u>mol</u> <u>0.000291</u> <u>mol</u> <u>0.000291</u> <u>0.000291</u> <u>mol</u> <u>0.000291</u> <u>0.000291</u> <u>0.000291</u> <u>0.000291</u> <u>0.000291</u> <u>0.000291</u> <u>0.000291</u> <u>0.000291</u> <u>0.000291</u> <u>0.000291</u> <u>0.000291</u> <u>0.000291</u> <u>0.000291</u> <u>0.000291</u> <u>0.000291</u> <u>0.000291</u> <u>0.000291</u> <u>0.000291</u> <u>0.000291</u> <u>0.000291</u> <u>0.000291</u> <u>0.000291</u> <u>0.000291</u> <u>0.000291</u> <u>0.000291</u> <u>0.000291</u> <u>0.000291</u> <u>0.000291</u> <u>0.000291</u> <u>0.000291</u> <u>0.000291</u> <u>0.000291</u> <u>0.000291</u> <u>0.000291</u> <u>0.000291</u> <u>0.000291</u> <u>0.000291</u> <u>0.000291</u> <u>0.000291</u> <u>0.000291</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0.00191</u> <u>0</u>	e a r is not nge ta d in or s accu on = C $D_4^$ Imol mol ne accur	eactant in designed to kes place. S ne big addit urately dete 0.01455litre 5 - = 0.00 0.00 cately know	n the reaction to be accurate b subsequent titro ion and the rem rmined. s × 0.02mol 1 ⁻¹ = Fe ³⁺ + M 01255mol 25litres =	on, appearing ut gives an idea ations are carrie ations of carrie ations of carrie ations of carries 0.000291mol n ²⁺ + 4H ₂ 0.0502mol l ⁻ ation which car	of the ed out dded D 1 n then	
7b(iii) Part A 7b(iii) Part B 7b(iii) Part C	A' ions are reactants Sample 1 is ignored as it is inaccurate 0.0502 Solution whose concentration is accurately known	Acid con before The 1 st Tir rough volu with the r drop by d n o. of mc 5n 0.0012 c Standar be used	ntains H ⁺ ions the arrow. tre is the rough ume at which the najority of the v rop until the colo ol = volume x co Fe ²⁺ + 8H ⁺ nol 255mol oncentration d solutions hav to work out th	which ar titre which colour chan olume adde olume adde incentration 1mol 0.000292 1mol 0.0002 1mol 0.00	e a r is not nge ta d in ou s accu s accu n = C D4 ⁻ - Imol me accur tratio	eactant in designed to kes place. S ne big addit urately dete 0.01455litre 	n the reaction to be accurate by subsequent titro ion and the rem rmined. s × 0.02mol 1 ⁻¹ = Fe ³⁺ + M 01255mol 25litres = wn concentratity of anoth	on, appearing ut gives an idea ations are carric ations volume ac 0.000291mol n ²⁺ + 4H ₂ 0 0.0502mol l ⁻ ution which ca er substance	of the ed out dded D 1 n then	
7b(iii) Part A 7b(iii) Part B 7b(iii) Part C 7b(iii)	A Tions are reactants Sample 1 is ignored as it is inaccurate 0.0502 Solution whose concentration is accurately known	Acid con before The 1 st Tir rough volu with the r drop by d no. of ma 51 0.0012 c Standar be used Pipettes	ntains H ⁺ ions the arrow. tre is the rough ume at which the najority of the v rop until the colo ol = volume x co $Fe^{2+} + 8H^+$ nol 255mol oncentration d solutions hav to work out the s, when used v	which ar titre which colour char olume adde <u>olume adde</u> <u>incentratio</u> <u>mol</u> <u>0.000293</u> <u>mol</u> <u>0.000293</u> <u>mol</u> <u>0.000293</u> <u>mol</u> <u>0.000293</u> <u>mol</u> <u>0.000293</u> <u>mol</u> <u>0.000293</u> <u>mol</u> <u>0.000293</u> <u>mol</u> <u>0.000293</u> <u>mol</u> <u>0.000293</u> <u>mol</u> <u>0.000293</u> <u>mol</u> <u>0.000293</u> <u>mol</u> <u>0.000293</u> <u>mol</u> <u>0.000293</u> <u>mol</u> <u>0.000293</u> <u>mol</u> <u>0.000293</u> <u>mol</u> <u>0.000293</u> <u>mol</u> <u>0.000293</u> <u>mol</u> <u>0.000293</u> <u>mol</u> <u>0.000293</u> <u>mol</u> <u>0.000293</u> <u>mol</u> <u>0.000293</u> <u>mol</u> <u>0.000293</u> <u>mol</u> <u>0.0002935</u> <u>mol</u> <u>0.0002935</u> <u>mol</u> <u>0.0002935</u> <u>mol</u> <u>0.0002935</u> <u>mol</u> <u>0.0002935</u> <u>mol</u> <u>0.0002935</u> <u>mol</u> <u>0.0002935</u> <u>mol</u> <u>0.0002935</u> <u>mol</u> <u>mol</u> <u>0.0002935</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u> <u>mol</u>	e a r is not nge ta d in or s accu on = C $D_4^$ umol mol ne accur tratic ette	eactant in designed to kes place. S ne big addit urately dete 0.01455litre \rightarrow 5 = 0.00 0.00 rately know on or quan filler for	n the reaction o be accurate b subsequent titra- ion and the rem rmined. s × 0.02mol 1 ⁻¹ = Fe ³⁺ + M 01255mol 25litres = wn concentra- tity of anoth safety reas	on, appearing ut gives an idea ations are carrie ations volume at 0.000291mol n ²⁺ + 4H ₂ 0.0502mol l ⁻ ation which ca ther substance cons, is more	of the ed out dded D 1	
7b(iii) Part A 7b(iii) Part B 7b(iii) Part C 7b(iii)	A Tions are reactants Sample 1 is ignored as it is inaccurate 0.0502 Solution whose concentration is accurately known Pipette	Acid con before The 1st Tir rough volu with the r drop by d no. of ma 5n 0.0012 c Standar be used Pipettes accurate	ntains H ⁺ ions the arrow. tre is the rough ume at which the najority of the v rop until the colo ol = volume x co Fe ²⁺ + 8H ⁺ nol 255mol oncentration d solutions hav to work out the s, when used v e than using n	which ar titre which colour chan olume adde olume adde incentration + MnC <u>1mol</u> 0.000293 no. of volur ve a very ne concentration vith a pip measuring	e a r is not nge ta d in or s accu on = C $D_4^$ umol mol ne accur tratic ette a cylin	eactant in designed to kes place. S ne big addit urately dete 0.01455litre 	n the reaction to be accurate by subsequent titre ion and the rem rmined. s x 0.02moll ¹² = Fe ³⁺ + M 01255mol 25litres = wn concentratity of another safety reas beakers for	on, appearing ut gives an idea ations are carrie ations of carrie ations of carrie ations of carrie 0.000291mol n ²⁺ + 4H ₂ 0.0502mol l ⁻ ation which ca ler substance cons, is more r accurately	of the ed out dded 0 1 n then	
7b(iii) Part A 7b(iii) Part B 7b(iii) Part C 7b(iii) Part D	A Tions are reactants Sample 1 is ignored as it is inaccurate 0.0502 Solution whose concentration is accurately known Pipette	Acid con before The 1 st Tir rough volu with the r drop by d no. of ma 5n 0.0012 c Standar be used Pipettes accurate measuri	ntains H ⁺ ions the arrow. tre is the rough ume at which the najority of the v rop until the colo of = volume x co Fe ²⁺ + 8H ⁺ nol 255mol oncentration d solutions hav to work out th s, when used v e than using n ng volumes of	which ar titre which colour chan olume adde our change i ncentratio + MnC 1mol 0.000291 mol 0.000291 1mol 0.000291	e a r is not nge ta d in or s accu s accu mol mol me accur tratic ette cylin	eactant in designed to kes place. S ne big addit <u>urately dete</u> 0.01455litre 5 = <u>0.000</u> cately know on or quan filler for nders and	n the reaction o be accurate b subsequent titra ion and the rem rmined. s × 0.02moll ¹¹ = Fe ³⁺ + M 01255mol 1251itres = wh concentrativy of anoth safety reast beakers for	on, appearing ut gives an idea ations are carrie ations volume at 0.000291mol n ²⁺ + 4H ₂ 0.0502mol l ⁻ ation which ca ler substance cons, is more r accurately	of the ed out dded 0 1 	
7b(iii) Part A 7b(iii) Part B 7b(iii) Part C 7b(iii) Part D	A lions are reactants Sample 1 is ignored as it is inaccurate 0.0502 Solution whose concentration is accurately known Pipette	Acid con before The 1 st Tir rough volu with the r drop by d no. of ma 5n 0.0012 c Standar be used Pipettes accurate measuri 5 tablet	ntains H ⁺ ions the arrow. tre is the rough ume at which the najority of the v rop until the colo of = volume x co $Fe^{2+} + 8H^+$ nol 255mol oncentration d solutions hav to work out the s, when used v e than using n ng volumes of ts = 0.00126m	which ar titre which colour char olume adde <u>olume adde</u> <u>incentration</u> mol <u>incentration</u> no. of volur ve a very ve a very ve a very vith a pip <u>neasuring</u> <u>inquids.</u> ol Fe \therefore 1	e a r is not nge ta d in or s accu on = C $D_4^$ Imol mol ne accur tratic ette r cylin L tabl	eactant in designed to kes place. S ne big addit urately dete 0.01455litre 	n the reaction o be accurate b subsequent titre ion and the rem <u>rmined.</u> s × 0.02mol 1 ⁻¹ = Fe ³⁺ + M 01255mol 25litres wh concentratity of anoth safety reas beakers for 0252mol Fe	on, appearing ut gives an idea ations are carrie ations of carrie ations of carrie ations of carrie ations of carries 0.000291mol n ²⁺ + 4H ₂ 0.0502mol l ⁻ ation which can be substance cons, is more accurately	of the ed out dded 0 1 n then	
7b(iii) Part A 7b(iii) Part B 7b(iii) Part C 7b(iii) Part D 7c	A Tions are reactants Sample 1 is ignored as it is inaccurate 0.0502 Solution whose concentration is accurately known Pipette 14.1	Acid con before The 1st Tir rough volu with the r drop by d no. of ma 5n 0.0012 c Standar be used Pipettes accurate measuri 5 tablet 1 mole o	ntains H ⁺ ions the arrow. tre is the rough une at which the najority of the v rop until the colo of = volume x co $Fe^{2+} + 8H^+$ nol 255mol oncentration d solutions hav to work out the s, when used v e than using n ng volumes of trs = 0.00126m	which ar titre which colour change olume adde olume adde ncentration + MnC 1mol 0.000291 no. of volur ve a very ne concent vith a pip neasuring filquids. ol Fe 1	e a r is not nge ta d in or s accu on = C D4 ⁻ - Imol mol ne accur tratic ette cylin	eactant in designed to kes place. S ne big addit urately dete 0.01455litre 	n the reaction o be accurate b subsequent titro ion and the rem rmined. s × 0.02mol 1 ⁻¹ = Fe ³⁺ + M 01255mol 25litres wh concentrative tity of anoth safety reas beakers for 0252mol Fe	on, appearing ut gives an idea ations are carrie ations of carrie ations of carrie ations of carrie 0.000291mol n ²⁺ + 4H ₂ 0.0502mol l ⁻ ation which ca ther substance cons, is more accurately	of the ed out dded 0 1 n then	

		100g breakfast cereal contains 12.0mg Fe						
7d	24.3	30g breakfast cereal contains 12.0mg Fe x $^{30}/_{100}$ = 3.6mg Fe						
		% Fe in 30g cereal = $\frac{\text{mass of Fe}}{\text{Recommended mass}} \times 100 = \frac{3.6\text{mg}}{14.8\text{mg}} \times 100 = 24.3\%$						
		3 mark answer 2 mark answer 1 mark answer						
8	Open Question Answer to Include:	Demonstrates a good understanding of the chemistry involved. A good comprehension of the chemistry has provided in a 						
9a (i)	Diagram showing:							
		Part of Soap Water Polarity Mechanism						
9 a(ii)	hydrophobic	Head Hydrophilic Polar Polar as stays outside non-polar grease aropiet and surrounds droplet until droplet is able to dissolve in water						
		Tail Hydrophobic Non-polar Non-polar fail enters non-polar grease droplet but head Cannot enter droplet. Non-polar fail enters non-polar grease droplet but head Non-polar fail enters non-polar grease droplet but head						
9b(i)	Kills Bacteria	Oxidising agents can be used kill bacteria and fungi. Oxidising agents can						
2 2 (1)		indictive viruses.						
	0.036litres	$\frac{1}{gfm} = \frac{1}{34g \text{ mol}^{-1}} = 0.0015\text{ mol}^{-1}$						
9b(ii)	or	$2H_2O_2 \longrightarrow 2H_2O + O_2$						
	36cm ³	2moi 1moi 0.0015mol 0.00075mol						
		Volume = no. of mol x Molar Volume = 0.00075mol x 24 litres mol ⁻¹ = 0.036 litres						
9 c(i)	amino acids	protein into amino acids is a hydrolysis reaction.						
9c(ii) Part A	Amide Link (or peptide link)	$\begin{array}{c} O \\ H \\ -C - OH \\ carboxyl group \end{array}^{+} H - N \\ \begin{array}{c} H \\ -N \\ amine \end{array} \xrightarrow{condensation}_{water removed} \\ \begin{array}{c} O \\ H \\ -C - N \\ amide link \end{array}$						
9c(ii) Part B	One from:	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						
9c(iii)	Denaturing	Enzymes are specifically-shaped proteins. Any change to the shape of an enzyme will prevent the enzyme from fitting the exact shape of the substrate molecule it						
Part A		catalyses the reaction for.						
9 c(iii)	Increase in	Enzymes have optimum temperatures and pH conditions which they work						
Part B	or change in nH	Altering the conditions of pH will also change the shape of the enzyme.						

		Condensation reactions involve the joining together of two molecules with							
9 d(i)	Condensation	When the acetic anhydride splits in half, one half joins to eh N atom in							
		ethylene diamine	and wate	r is remo	ved betwe	en the two	molecule	S.	
9d(ii)	Diagram showing:	$H_{3}C-C$ $N-(CH_{2})_{2}-N$ $H_{3}C-C$ $C-CH_{3}$							
10 - 40	40.2			Component	t peak area	319	09		
10a (i)	40.2	Relative con	centration =	Total Pe	eak Area	×100 = 793	10 ×100 = 4	0.2%	
10a(ii)	geranyl acetate	Lavender Oil A Peak Component Retention Time (min) Lavender Oil B Peak	1 1,8-cineole 17 1 ^{s†}	2 Linalool 18 2 nd	3 Camphor 19 3 rd	4 linalyl acetate 20.75 4 th	5 geranyl acetate 21.25 No peak	6 farnesene 24 5 th	
10b	£0.0272 or 2.72p	1cm ³ mouthwo 500cm ³ mouthwo 1000g 1,8-cineolo 0.46g 1,8-cineolo	ash c ash c e c e c	ontains ontains osts osts	0.92mg 1 0.92mg x = 460mg 1 = 0.46g 1, £59.10 £59.10 x = £0.027	,8-cineole ⁵⁰⁰ /1 1,8-cineole 8-cineole ^{0.46g} / _{1000g} 72 = 2.72p			
10c(i)	Diagram showing:	H₃C	— с	CH3 H H C — C − H	н с -с-сс н с	H₃ → c →	і С— н I		
10c(ii)	C ₁₅ H ₂₄	One isoprene u ∴ three isopre	nit = C_5H_8 ne units =	C ₁₅ H ₂₄		H ₂ C H ₃ C 2-methylbu	-CH CH CH2 uta-1,3-diene		